T26A

"TRADER" SERVICE SHEET

THREE wavebands and three pre-sat stations are provided on a single six-position control in the Marconiphone T26A, a 4-valve (plus rectifier) superhet designed to operate from A.C. mains of 195-255 V, 50-100 c/s. The waveband ranges are 16.5-52 m, 187-557 m and 900-2,000 m.

The ARG27A is an autoradiogram employing a slightly modified T26A chassis.

Release date and original price: T26A, November 1950, £18 18s; ARG27A, August 1950, £50 8s. Perchase tax extra.

CIRCUIT DESCRIPTION

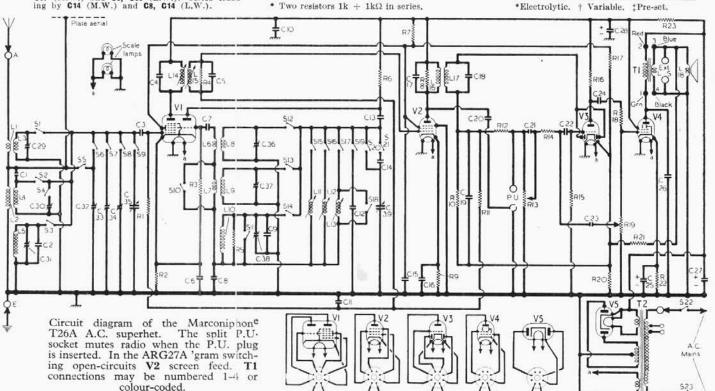
Aerial input via coupling coils L1 (S.W.) and L2 (M.W. and L.W.) to single-tuned circuits comprising L3 (S.W.), L4 (M.W.) and L5 (L.W.) tuned manually by C35 or automatically by preset capacitors C32, C33 (M.W.) or C34 (L.W.). An internal plate aerial is fitted First valve (V1, Marconi X148) is a triodeheptode, operating as frequency changer with internal coupling. Manual tuning is by C39 and oscillator anode coils L8 (S.W.), L9 (M.W.), L10 (L.W.). Parallel trimming by C36 (S.W.), C37 (M.W.) and C9, C38 (L.W.). Series tracking by C14 (M.W.) and C8, C14 (L.W.).

For automatic tuning, coils L11, L12 (M.W.) or L13 (L.W.) are tuned by C12, adjustments being made by means of the pre-set coil cores. Second valve (V2, Marconi W148) is a variable-mu R.F. pentode operating as intermediate frequency amplifler with tuned transformer couplings.

Intermediate frequency 465 kc/s.
Diode signal detector is part of double diode triode (V3, Marconi DH149). Audio frequency component in rectified output is developed across diode load resistor R10 and is passed via volume control R13 to grid of triode section. Treble compensation at low-level settings of the volume control is provided by C21. I.F. filtering by C19 and R12. Grid bias is obtained from the H.T. potential divider R7, R17, R20.

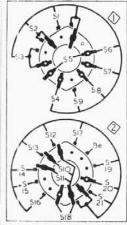
Resistance-capacitance coupling between V3 triode and beam pentode output valve (V4, Marconi N148) via R16, C24 and R19. Variable negative feedback via tone control R19 and C23

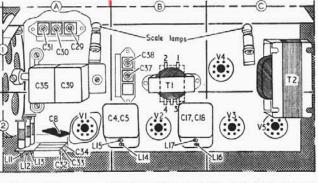
between V4 and V3 control grid circuits. Fixed tone correction by C26 in V4 anode circuit, and by feed-back from T1 secondary winding via R21 to V3 cathode circuit.


H.T. current is supplied by I.H.C. full-wave rectifying valve (V5, Marconi U149). Smoothing by C28, C29 and R27.

	CAPACITORS	Values	Loca- tions	
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17	Aerial coupling L.W. aerial trim V1 C.G. 1st I.F. trans	5pF 30pF 100pF 100pF 180pF 0-02µF 100pF 270pF 100pF 100pF 100pF 100pF 100pF 0-05µF 0-05µF 0-05µF 100pF	G4 G3 G4 B2 B2 G5 A2 F3 E4 G4 G4 G4 G5 B2	
C18 C19 C20 C21 C22 C23 C24 C25* C26	2 2nd 1.F. trans. { tuming { 1.F. by-pass Radio muting } Tone compensator A.F. coupling Neg. feed-back A.F. coupling V4 cath, by-pass Tone compensator	180pf 100pF 0·02µF 50pF 0·01µF 40pF 0·02µF 25µF 0·005µF	E5 F5 E3 D4 E3 D4 D3 E4	
C27* C28* C29± C30± C31± C32± C32± C33± C34± C35+ C36± C37± C38+ C37+ C38+ C39+	S.W. aerial trim M.W. aerial trim L.W. aerial trim M.W. pre-set tune M.W. pre-set tune L.W. pre-set tune L.W. pre-set tune L.W. pre-set tune L.W. osc. trimmer M.W. osc. trimmer L.W. osc. trimmer Oscillator tuning	32µF 32µF ————————————————————————————————————	E4 E4 A1 A1 A2 A2 A2 A1 F4 B1 B1 A1	

COMPONENTS AND VALUES


	RESISTORS	Values	Loca- tions
R1	VI hex. C.G	680kΩ	F5
R2	V1 G,B,	220Ω	G5
R3	V1 osc, C.G	$33k\Omega$	G5
R4	I.F. trans, shunt	330kΩ	F5
R5	L.W. osc. shunt	39kΩ	G4
R6	Osc. anode feed .	$22k\Omega$	F5
R7	H.T. decoupling	$22k\Omega$	E4
R8	I.F. trans, shunt	330kΩ	E5
R9	V2 G.B	330Ω	F5
R10	Diode load	470kΩ	E5
R11	A.G.C. decoup	2·2MΩ	E4
R12	I.F. filter	100kΩ	E4
R13	Volume control	$2M\Omega$	D3
R14	Feed-back stopper	220kΩ	D4
R15	V3 C.G	10ΜΩ	D5
R16	V3 anode load	220kΩ	D5
R17	Part V3 G.B	47kΩ	E5
R18	A.F. coupling	47kΩ	E4
R19	Tone control	500kΩ	E3
R20	V3 G.B	100Ω	E5
R21	Neg, feed-back	1kΩ	E5
R22	V4 G.B	330Ω	D4
R23*	H.T. smoothing	2kΩ	F4


Two resistors 1k + 1kΩ in series.

Supplement to Wireless Electrical Trader, September 1, 195

отн	IER COMPONENTS	Approx. Values (ohms)	Locations
L1 L2 L3 L4	Aerial coupling coils { Aerial tuning coils {	0·2 130·0 0·1 2·7	F3 G3 F3 G3
L5 L6 L7 L8	Oscillator reaction {	25·0 0·4 2·4 0·1	G3 F4 G4 F4
L9 L10 L11 L12	Oscillator tuning coils M.W. pre-set oscil- lator coils	2·8 6·5 2·0 2·5	G4 G4 A2 A2
L13 L14 L15	L.W. osc. pre-set 1st I.F. trans. {Pri. Sec.	5·0 6·0 4·0	A2 B2 B2
L16 L17 L18	} 2nd I.F. trans. {Pri. Sec. Speech coil (Primary	6.0 4.0 2.5 350.0	B2 B2 B1
T1	Secondary Primary, total H.T. sec., total	0·6 40·0 380·0	C1
r2 1-821	Rect. heat. sec Heater sec Waveband switches	0·4 0·1	G4
S22, S23	Mains sw., g'd R13	_	D3

Above: Waveband switch diagrams and plan view. Below: Switch table.

DISMANTLING THE SET

The majority of the under-chassis components can be made accessible by removing the cabinet base cover (four wood screws).

Removing Chassis.—Unsolder leads from speech

release plate aerial lead from wood screw on left-hand side (viewed from rear) of cabinet; remove four control knobs (pull-off); remove four 2BA chassis bolts and withdraw

chassis.

When replacing, the black speaker lead should go to the top speech coil tag.

CIRCUIT ALIGNMENT

In order to make the following adjustments easily accessible, the chassis should be removed from the cabinet.

1.F. Stages.—Switch set to M.W., turn the volume control and gang to maximum, and the tone control and gang to maximum, and the output of the signal generator, via a 0.1µF capacitor in the "live" lead, to control grid (pin 6) of V2 and chassis. Feed in a 465 kc/s (645.16m) signal and adjust the cores of L17, L16 (location reference B2) for maximum output. Transfer signal generator leads to control grid (pin 6) of V1 and chassis. Adjust the cores of L15, L14 (B2) for maximum output. Repeat these adjustments.

R.F. and Oscillator Stages.—As the tuning scale remains fixed in the cabinet when the chassis is withdrawn, reference should be made to the substitute scale printed on the side of the tuning drum. This scale is marked to show the trimming drum. This scale is marked to show the trimming frequencies for the three bands.

the trimming frequencies for the three bands, readings being taken against the end of the

Voltage adj.

Switch	S.W.	M.W.	L.W.	3	2	1
S1	С	_	-	_		_
\$2 \$3 \$4 \$5 \$6 \$7 \$8 \$9	-	C	_		577	777
53		O	С		-	
85	C			-		
86	- N		-	С	-	
87	_	122	-	_	C	
88	_	-	-		-	С
89	c	C	c	77%	-	-
S10 S11	0000	0	_	C	0 00	0 00
812	O			-	-	- 2
S12 S13	-	C	-	900	200	-
814	-	-	С	_	-	
S15 S16			-	C	-	
S17					_	C
818	C	c	С	cc	0 00	_
819	-			C	С	C
820	C	-	c	77.5	7557	0
S21	-	С	C	10000		-

pointer which is mounted on top of the gang. Check that with the gang at maximum capacitance the cursor coincides with line at the L.F.

tance the cursor coincides with line at the L.F. end of the substitute scale.

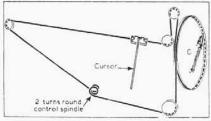
S.W.—Switch set to S.W. and tune to the S Mc/s trimming point on the substitute scale. Transfer signal generator leads, via a dummy aerial, to A and E sockets, feed in an 18.0 Mc/s (16.67m) signal and adjust C36 (F4) and C29 (A1) for maximum output, Repeat these adjustments.

(A1) for maximum output. Repeat these adjustments.

M.W.—Switch set to M.W., tune to 1,300 kc/s trimming point on scale, feed in a 1,300 kc/s (230.8m) signal and adjust C37 (B1) and C30 (A1) for maximum output. Repeat these adjustments.

L.W .- Switch set to L.W., tune to 300 kc/s

trimming point on scale, feed in a 300 kc/s (1,000m) signal and adjust C38 (B1) and C31 (A1) for maximum output. Repeat these adjustments.


Ari) for maximum output. Repeat these adjustments.

Pre-set Stations.—A signal generator may be used to set these adjustments roughly, but they should be subsequently adjusted on the stations they are intended to receive. The trimmers and core adjustments for the pre-set stations are accessible through apertures in the back cover. A trimming tool is provided for the core adjustments and is fitted to the rear cabinet member on the right of the voltage adjustment panel.

Numbering from the fully clockwise position of the waveband control, the pre-set station coverages are as follows: 1, 1,250-2,000m; 2, 330-560m; 3, 194-350m. Then follow L.W., M.W. and S.W. manual settings.

GENERAL NOTES

Switches.—SJ-S21 are the waveband and preset station switches, ganged in two rotary units. These are indicated in our under-chassis view, and shown in detail in the diagram inset beside our plan view of the chassis. The table below them gives the switch positions for the six control settings, starting from the fully anti-clockwise position of the control. A dash indicates open, and C, closed.

Sketch of the tuning drive system.

Scale Lamps.—8.5 V. 0.3 A, small clear spherical bulb, M.E.S. base.

External Speaker.—Impedance about 5 Ω .

Drive Cord Replacement.—6 feet of flax fishing line is ample for this purpose, and it should be run as shown in our sketch, where it is viewed from the front right-hand corner with the gang at maximum capacitance. In some cases there may be a fifth pulley at the bottom left-hand corner. left-hand corner.

VALVE ANALYSIS

Valve voltages and currents given in the table below are those measured in our receiver when it was operating from 230V A.C. mains, with the voltage adjustment set appropriately.

Valve voltages were measured with an Avo Electronic Testmeter and as it draws no appreciable current, allowance must be made for the current drawn by other meters. Chassis was the negative connection.

Values	Anode		Sei	Screen	
vanues	V	mA	v	mA	v
V1 X148	{ 260 Oscill 165	2·2 ator 4·0	96	3.6	2.2
V2 W148	260	7.0	96	1.3	3.0
V3 DH149 V4 N148	135 300	32.0	260	4.0	0.28 12.5
V5 U149	280+	-		-	310-0

+A.C., each anode.

7	(D) (E) (F) (G) (G) (G) (G) (G) (G) (G) (G) (G) (G	4
3)	RI3 (00 RI9)	
Ÿ	S22,523	
	C25 C26 CII C26 CII lead	
	R22 C23 C9	
	RI8 V4 C28 CIO CID CID C3	
(4)	RI4QU -CI2	-
Y	C22 R7 C14	
	RIS RIG C7 CI3 C36 C7 CI3 RIS	
	R17 R12 R40 R3 P3	
	(V5) V3) RIO CI9 R8 (V2) R9 RI VI R2 2	
5	R20	
T. (1)		ā

Underside view of the chassis. Waveband switch diagrams 1, 2 are at the head of col. 2.